1
GATE EE 2016 Set 1
+2
-0.6
Consider the following asymptotic Bode magnitude plot ($${\omega \,\,}$$ is in $$rad/s$$)

Which one of the following transfer functions is best represented by the above Bode magnitude plot?

A
$${{2s} \over {\left( {1 + 0.5s} \right){{\left( {1 + 0.25} \right)}^2}}}$$
B
$${{4\left( {1 + 0.5s} \right)} \over {s\left( {1 + 0.25s} \right)}}$$
C
$${{2s} \over {\left( {1 + 2s} \right)\left( {1 + 4s} \right)}}$$
D
$${{4s} \over {\left( {1 + 2s} \right){{\left( {1 + 4s} \right)}^2}}}$$
2
GATE EE 2016 Set 1
+2
-0.6
Loop transfer function of a feedback system is $$G\left( s \right)H\left( s \right) = {{s + 3} \over {{s^2}\left( {s - 3} \right)}}.$$ Take the Nyquist contour in the clockwise direction. Then, the Nyquist plot of $$G(s)$$ $$H(s)$$ encircles $$-1+j0$$
A
once in clockwise direction
B
twice in clockwise direction
C
once in anticlockwise direction
D
twice in anticlockwise direction
3
GATE EE 2014 Set 3
+2
-0.6
The magnitude Bode plot of a network is shown in the figure

The maximum phase angle $${\phi _m}$$ and the corresponding gain $${G_m}$$ respectively are

A
$$- {30^ \circ }\,$$ and $$1.73dB$$
B
$$- {30^ \circ }\,$$ and $$4.77dB$$
C
$$+ {30^ \circ }\,$$ and $$4.77dB$$
D
$$+ {30^ \circ }\,$$ and $$1.73dB$$
4
GATE EE 2014 Set 2
+2
-0.6
For the transfer function $$G\left( s \right) = {{5\left( {s + 4} \right)} \over {s\left( {s + 0.25} \right)\left( {{s^2} + 4s + 25} \right)}}.$$ The values of the constant gain term and the highest corner frequency of the Bode plot respectively are
A
$$3.2, 5.0$$
B
$$16.0, 4.0$$
C
$$3.2, 4.0$$
D
$$16.0, 5.0$$
EXAM MAP
Medical
NEET