1
GATE EE 2009
+2
-0.6
The asymptotic approximation of the log magnitude vs frequency plot of a system containing only real poles and zeros is shown. Its transfer function is A
$${{10\left( {s + 5} \right)} \over {s\left( {s + 2} \right)\left( {s + 25} \right)}}$$
B
$${{1000\left( {s + 5} \right)} \over {{s^2}\left( {s + 2} \right)\left( {s + 25} \right)}}$$
C
$${{100\left( {s + 5} \right)} \over {s\left( {s + 2} \right)\left( {s + 25} \right)}}$$
D
$${{80\left( {s + 5} \right)} \over {{s^2}\left( {s + 2} \right)\left( {s + 25} \right)}}$$
2
GATE EE 2008
+2
-0.6
The asymptotic Bode magnitude plot of a minimum phase transfer function is shown in the figure: This transfer function has

A
three poles and one zero
B
two poles and one zero
C
two poles and two zeros
D
one pole and two zeros
3
GATE EE 2007
+2
-0.6
If $$X = {\mathop{\rm Re}\nolimits} G\left( {j\omega } \right),\,\,$$ and $$y = {\rm I}mG\left( {j\omega } \right)$$ then for $$\omega \to {0^ + },\,\,$$ the Nyquist plot for $$G\left( s \right) = 1/\left[ {s\left( {s + 1} \right)\left( {s + 2} \right)} \right]$$
A
$$x=0$$
B
$$x=-3/4$$
C
$$x=y-1/6$$
D
$$x = y/\sqrt 3$$
4
GATE EE 2006
+2
-0.6
The Bode magnitude plot of $$H\left( {j\omega } \right) = {{{{10}^4}\left( {1 + j\,\omega } \right)} \over {\left( {10 + j\,\omega } \right){{\left( {100 + j\omega } \right)}^2}}}$$ is
A B C D GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics
Digital Electronics
EXAM MAP
Joint Entrance Examination