1
GATE EE 2009
+2
-0.6
The asymptotic approximation of the log magnitude vs frequency plot of a system containing only real poles and zeros is shown. Its transfer function is
A
$${{10\left( {s + 5} \right)} \over {s\left( {s + 2} \right)\left( {s + 25} \right)}}$$
B
$${{1000\left( {s + 5} \right)} \over {{s^2}\left( {s + 2} \right)\left( {s + 25} \right)}}$$
C
$${{100\left( {s + 5} \right)} \over {s\left( {s + 2} \right)\left( {s + 25} \right)}}$$
D
$${{80\left( {s + 5} \right)} \over {{s^2}\left( {s + 2} \right)\left( {s + 25} \right)}}$$
2
GATE EE 2008
+2
-0.6
The asymptotic Bode magnitude plot of a minimum phase transfer function is shown in the figure:

This transfer function has

A
three poles and one zero
B
two poles and one zero
C
two poles and two zeros
D
one pole and two zeros
3
GATE EE 2007
+2
-0.6
If $$X = {\mathop{\rm Re}\nolimits} G\left( {j\omega } \right),\,\,$$ and $$y = {\rm I}mG\left( {j\omega } \right)$$ then for $$\omega \to {0^ + },\,\,$$ the Nyquist plot for $$G\left( s \right) = 1/\left[ {s\left( {s + 1} \right)\left( {s + 2} \right)} \right]$$
A
$$x=0$$
B
$$x=-3/4$$
C
$$x=y-1/6$$
D
$$x = y/\sqrt 3$$
4
GATE EE 2006
+2
-0.6
The Bode magnitude plot of $$H\left( {j\omega } \right) = {{{{10}^4}\left( {1 + j\,\omega } \right)} \over {\left( {10 + j\,\omega } \right){{\left( {100 + j\omega } \right)}^2}}}$$ is
A
B
C
D
EXAM MAP
Medical
NEET