1
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let x $$ \in $$ R and let $$P = \left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]$$, $$Q = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right]$$ and R = PQP$$-$$1, which of the following options is/are correct?
A
There exists a real, number x such that PQ = QP
B
For $$x = 0$$, if $$R \left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$, then a + b =5
C
For x = 1, there exists a unit vector $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ for which $$R\left[ {\matrix{ \alpha \cr \beta \cr \gamma \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
D
$$\det R = \det \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 5 \cr } } \right] + 8$$, for all x $$ \in $$ R
2
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
$${P_1} = I = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right],\,{P_2} = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right],\,{P_3} = \left[ {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right],\,{P_4} = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 1 & 0 & 0 \cr } } \right],\,{P_5} = \left[ {\matrix{ 0 & 0 & 1 \cr 1 & 0 & 0 \cr 0 & 1 & 0 \cr } } \right],\,{P_6} = \left[ {\matrix{ 0 & 0 & 1 \cr 0 & 1 & 0 \cr 1 & 0 & 0 \cr } } \right]$$ and $$X = \sum\limits_{k = 1}^6 {{P_k}} \left[ {\matrix{ 2 & 1 & 3 \cr 1 & 0 & 2 \cr 3 & 2 & 1 \cr } } \right]P_k^T$$

where $$P_k^T$$ denotes the transpose of the matrix Pk. Then which of the following option is/are correct?
A
X is a symmetric matrix
B
The sum of diagonal entries of X is 18
C
X $$-$$ 30I is an invertible matrix
D
If $$X\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = \alpha \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$, then $$\alpha = 30$$
3
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
Change Language
Let $$\overrightarrow a = 2\widehat i + \widehat j - \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j + \widehat k$$ be two vectors. Consider a vector c = $$\alpha $$$$\overrightarrow a$$ + $$\beta $$$$\overrightarrow b$$, $$\alpha $$, $$\beta $$ $$ \in $$ R. If the projection of $$\overrightarrow c$$ on the vector ($$\overrightarrow a$$ + $$\overrightarrow b$$) is $$3\sqrt 2 $$, then the
minimum value of ($$\overrightarrow c$$ $$-$$($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$)).$$\overrightarrow c$$ equals ................
Your input ____
4
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
Change Language
Let |X| denote the number of elements in a set X. Let S = {1, 2, 3, 4, 5, 6} be a sample space, where each element is equally likely to occur. If A and B are independent events associated with S, then the number of ordered pairs (A, B) such that 1 $$ \le $$ |B| < |A|, equals .............
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12