1
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let x $$ \in $$ R and let $$P = \left[ {\matrix{
1 & 1 & 1 \cr
0 & 2 & 2 \cr
0 & 0 & 3 \cr
} } \right]$$, $$Q = \left[ {\matrix{
2 & x & x \cr
0 & 4 & 0 \cr
x & x & 6 \cr
} } \right]$$ and R = PQP$$-$$1, which of the following options is/are correct?
2
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
$${P_1} = I = \left[ {\matrix{
1 & 0 & 0 \cr
0 & 1 & 0 \cr
0 & 0 & 1 \cr
} } \right],\,{P_2} = \left[ {\matrix{
1 & 0 & 0 \cr
0 & 0 & 1 \cr
0 & 1 & 0 \cr
} } \right],\,{P_3} = \left[ {\matrix{
0 & 1 & 0 \cr
1 & 0 & 0 \cr
0 & 0 & 1 \cr
} } \right],\,{P_4} = \left[ {\matrix{
0 & 1 & 0 \cr
0 & 0 & 1 \cr
1 & 0 & 0 \cr
} } \right],\,{P_5} = \left[ {\matrix{
0 & 0 & 1 \cr
1 & 0 & 0 \cr
0 & 1 & 0 \cr
} } \right],\,{P_6} = \left[ {\matrix{
0 & 0 & 1 \cr
0 & 1 & 0 \cr
1 & 0 & 0 \cr
} } \right]$$ and $$X = \sum\limits_{k = 1}^6 {{P_k}} \left[ {\matrix{
2 & 1 & 3 \cr
1 & 0 & 2 \cr
3 & 2 & 1 \cr
} } \right]P_k^T$$
where $$P_k^T$$ denotes the transpose of the matrix Pk. Then which of the following option is/are correct?
where $$P_k^T$$ denotes the transpose of the matrix Pk. Then which of the following option is/are correct?
3
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
Let $$\overrightarrow a = 2\widehat i + \widehat j - \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j + \widehat k$$ be two vectors. Consider a vector c = $$\alpha $$$$\overrightarrow a$$ + $$\beta $$$$\overrightarrow b$$, $$\alpha $$, $$\beta $$ $$ \in $$ R. If the projection of $$\overrightarrow c$$ on the vector ($$\overrightarrow a$$ + $$\overrightarrow b$$) is $$3\sqrt 2 $$, then the
minimum value of ($$\overrightarrow c$$ $$-$$($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$)).$$\overrightarrow c$$ equals ................
minimum value of ($$\overrightarrow c$$ $$-$$($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$)).$$\overrightarrow c$$ equals ................
Your input ____
4
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
Let |X| denote the number of elements in a set X. Let S = {1, 2, 3, 4, 5, 6} be a sample space, where each element is equally likely to occur. If A and B are independent events associated with S, then the number of ordered pairs (A, B) such that 1 $$ \le $$ |B| < |A|, equals .............
Your input ____
Paper analysis
Total Questions
Chemistry
18
Mathematics
18
Physics
18
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978