1
JEE Advanced 2014 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0
From a point $$P\left( {\lambda ,\lambda ,\lambda } \right),$$ perpendicular $$PQ$$ and $$PR$$ are drawn respectively on the lines $$y=x, z=1$$ and $$y=-x, z=-1.$$ If $$P$$ is such that $$\angle QPR$$ is a right angle, then the possible value(s) of $$\lambda $$ is/(are)
2
JEE Advanced 2014 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0
Let $$\overrightarrow x ,\overrightarrow y $$ and $$\overrightarrow z $$ be three vectors each of magnitude $$\sqrt 2 $$ and the angle between each pair of them is $${\pi \over 3}$$. If $$\overrightarrow a $$ is a non-zero vector perpendicular to $$\overrightarrow x $$ and $$\overrightarrow y \times \overrightarrow z $$ and $$\overrightarrow b $$ is a non-zero vector perpendicular to $$\overrightarrow y $$ and $$\overrightarrow z \times \overrightarrow x ,$$ then
3
JEE Advanced 2014 Paper 1 Offline
Numerical
+3
-0
Let $$\overrightarrow a \,\,,\,\,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-coplanar unit vectors such that the angle between every pair of them is $${\pi \over 3}.$$ If $$\overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = p\overrightarrow a + q\overrightarrow b + r\overrightarrow c ,$$ where $$p,q$$ and $$r$$ are scalars, then the value of $${{{p^2} + 2{q^2} + {r^2}} \over {{q^2}}}$$ is
Your input ____
4
JEE Advanced 2014 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0
Let $$f:(a,b) \to [1,\infty )$$ be a continuous function and g : R $$\to$$ R be defined as $$g(x) = \left\{ {\matrix{
0 & , & {x < a} \cr
{\int_a^x {f(t)dt} } & , & {a \le x \le b} \cr
{\int_a^b {f(t)dt} } & , & {x > b} \cr
} } \right.$$ Then,
Paper analysis
Total Questions
Chemistry
20
Mathematics
20
Physics
20
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978