1
JEE Advanced 2014 Paper 1 Offline
Numerical
+3
-0
The value of $$\int\limits_0^1 {4{x^3}\left\{ {{{{d^2}} \over {d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\}dx} $$ is
Your input ____
2
JEE Advanced 2014 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0
From a point $$P\left( {\lambda ,\lambda ,\lambda } \right),$$ perpendicular $$PQ$$ and $$PR$$ are drawn respectively on the lines $$y=x, z=1$$ and $$y=-x, z=-1.$$ If $$P$$ is such that $$\angle QPR$$ is a right angle, then the possible value(s) of $$\lambda $$ is/(are)
A
$$\sqrt 2 $$
B
$$1$$
C
$$-1$$
D
$$-\sqrt 2 $$
3
JEE Advanced 2014 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0
Let $$\overrightarrow x ,\overrightarrow y $$ and $$\overrightarrow z $$ be three vectors each of magnitude $$\sqrt 2 $$ and the angle between each pair of them is $${\pi \over 3}$$. If $$\overrightarrow a $$ is a non-zero vector perpendicular to $$\overrightarrow x $$ and $$\overrightarrow y \times \overrightarrow z $$ and $$\overrightarrow b $$ is a non-zero vector perpendicular to $$\overrightarrow y $$ and $$\overrightarrow z \times \overrightarrow x ,$$ then
A
$$\overrightarrow b = \left( {\overrightarrow b \,.\,\overrightarrow z } \right)\left( {\overrightarrow z - \overrightarrow x } \right)$$
B
$$\overrightarrow a = \left( {\overrightarrow a \,.\,\overrightarrow y } \right)\left( {\overrightarrow y - \overrightarrow z } \right)$$
C
$$\overrightarrow a \,.\,\overrightarrow b = - \left( {\overrightarrow a \,.\,\overrightarrow y } \right)\left( {\overrightarrow b \,.\,\overrightarrow z } \right)$$
D
$$\overrightarrow a = \left( {\overrightarrow a \,.\,\overrightarrow y } \right)\left( {\overrightarrow z - \overrightarrow y } \right)$$
4
JEE Advanced 2014 Paper 1 Offline
Numerical
+3
-0
Let $$\overrightarrow a \,\,,\,\,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-coplanar unit vectors such that the angle between every pair of them is $${\pi \over 3}.$$ If $$\overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = p\overrightarrow a + q\overrightarrow b + r\overrightarrow c ,$$ where $$p,q$$ and $$r$$ are scalars, then the value of $${{{p^2} + 2{q^2} + {r^2}} \over {{q^2}}}$$ is
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12