1
IIT-JEE 1994
Fill in the Blanks
+2
-0
Let $$P$$ be a variable point on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ with foci $${F_1}$$ and $${F_2}$$. If $$A$$ is the area of the triangle $$P{F_1}{F_2}$$ then the maximum value of $$A$$ is ..........
2
IIT-JEE 1994
Fill in the Blanks
+2
-0
Let $$C$$ be the curve $${y^3} - 3xy + 2 = 0$$. If $$H$$ is the set of points on the curve $$C$$ where the tangent is horizontal and $$V$$ is the set of the point on the curve $$C$$ where the tangent is vertical then $$H=$$.............. and $$V=$$ .................
3
IIT-JEE 1994
MCQ (Single Correct Answer)
+1
-0.25
If we consider only the principle values of the inverse trigonometric functions then the value of
$$\tan \left( {{{\cos }^{ - 1}}{1 \over {5\sqrt 2 }} - {{\sin }^{ - 1}}{4 \over {\sqrt {17} }}} \right)$$ is
$$\tan \left( {{{\cos }^{ - 1}}{1 \over {5\sqrt 2 }} - {{\sin }^{ - 1}}{4 \over {\sqrt {17} }}} \right)$$ is
4
IIT-JEE 1994
Subjective
+5
-0
Consider the following statements connecting a triangle $$ABC$$
(i) The sides $$a, b, c$$ and area $$\Delta $$ are rational.
(ii) $$a,\tan {B \over 2},\tan {c \over 2}$$ are rational.
(iii) $$a,\sin A,\sin B,\sin C$$ are rational.
Prove that $$\left( i \right) \Rightarrow \left( {ii} \right) \Rightarrow \left( {iii} \right) \Rightarrow \left( i \right)$$
Paper analysis
Total Questions
Chemistry
15
Mathematics
47
Physics
3
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978