1
IIT-JEE 1994
MCQ (More than One Correct Answer)
+4
-1
The vector $$\,{1 \over 3}\left( {2\widehat i - 2\widehat j + \widehat k} \right)$$ is
A
a unit vector
B
makes an angle $${\pi \over 3}$$ with the vector $$\left( {2\widehat i - 4\widehat j + 3\widehat k} \right)$$
C
parallel to the vector $$\left( { - \widehat i + \widehat j - {1 \over 2}\widehat k} \right)$$
D
perpendicular to the vector $${3\widehat i + 2\widehat j - 2\widehat k}$$
2
IIT-JEE 1994
Subjective
+4
-0
If the vectors $$\overrightarrow b ,\overrightarrow c ,\overrightarrow d ,$$ are not coplanar, then prove that the vector
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) + \left( {\overrightarrow a \times \overrightarrow c } \right) \times \left( {\overrightarrow d \times \overrightarrow b } \right) + \left( {\overrightarrow a \times \overrightarrow d } \right) \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ is parallel to $$\overrightarrow a .$$
3
IIT-JEE 1994
MCQ (Single Correct Answer)
+2
-0.5
Let $$n$$ be a positive integer such that $$\sin {\pi \over {2n}} + \cos {\pi \over {2n}} = {{\sqrt n } \over 2}.$$ Then
A
$$6 \le n \le 8$$
B
$$4 < n \le 8$$
C
$$4 \le n \le 8$$
D
$$4 < n < 8$$
4
IIT-JEE 1994
MCQ (Single Correct Answer)
+1
-0.25
The function defined by $$f\left( x \right) = \left( {x + 2} \right){e^{ - x}}$$
A
decreasing for all $$x$$
B
decreasing in $$\left( { - \infty , - 1} \right)$$ and increasing in $$\left( { - 1,\infty } \right)$$
C
increasing for all $$x$$
D
decreasing in $$\left( { - 1,\infty } \right)$$ and increasing in $$\left( { - \infty , - 1} \right)$$
JEE Advanced Papers
EXAM MAP