1
IIT-JEE 1994
MCQ (More than One Correct Answer)
+4
-1
The vector $$\,{1 \over 3}\left( {2\widehat i - 2\widehat j + \widehat k} \right)$$ is
A
a unit vector
B
makes an angle $${\pi \over 3}$$ with the vector $$\left( {2\widehat i - 4\widehat j + 3\widehat k} \right)$$
C
parallel to the vector $$\left( { - \widehat i + \widehat j - {1 \over 2}\widehat k} \right)$$
D
perpendicular to the vector $${3\widehat i + 2\widehat j - 2\widehat k}$$
2
IIT-JEE 1994
Subjective
+4
-0
If the vectors $$\overrightarrow b ,\overrightarrow c ,\overrightarrow d ,$$ are not coplanar, then prove that the vector
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) + \left( {\overrightarrow a \times \overrightarrow c } \right) \times \left( {\overrightarrow d \times \overrightarrow b } \right) + \left( {\overrightarrow a \times \overrightarrow d } \right) \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ is parallel to $$\overrightarrow a .$$
3
IIT-JEE 1994
MCQ (Single Correct Answer)
+2
-0.5
Let $$n$$ be a positive integer such that $$\sin {\pi \over {2n}} + \cos {\pi \over {2n}} = {{\sqrt n } \over 2}.$$ Then
A
$$6 \le n \le 8$$
B
$$4 < n \le 8$$
C
$$4 \le n \le 8$$
D
$$4 < n < 8$$
4
IIT-JEE 1994
MCQ (Single Correct Answer)
+1
-0.25
The function defined by $$f\left( x \right) = \left( {x + 2} \right){e^{ - x}}$$
A
decreasing for all $$x$$
B
decreasing in $$\left( { - \infty , - 1} \right)$$ and increasing in $$\left( { - 1,\infty } \right)$$
C
increasing for all $$x$$
D
decreasing in $$\left( { - 1,\infty } \right)$$ and increasing in $$\left( { - \infty , - 1} \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12