1
IIT-JEE 1994
Subjective
+4
-0
If the vectors $$\overrightarrow b ,\overrightarrow c ,\overrightarrow d ,$$ are not coplanar, then prove that the vector
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) + \left( {\overrightarrow a \times \overrightarrow c } \right) \times \left( {\overrightarrow d \times \overrightarrow b } \right) + \left( {\overrightarrow a \times \overrightarrow d } \right) \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ is parallel to $$\overrightarrow a .$$
2
IIT-JEE 1994
MCQ (Single Correct Answer)
+2
-0.5
Let $$n$$ be a positive integer such that $$\sin {\pi \over {2n}} + \cos {\pi \over {2n}} = {{\sqrt n } \over 2}.$$ Then
A
$$6 \le n \le 8$$
B
$$4 < n \le 8$$
C
$$4 \le n \le 8$$
D
$$4 < n < 8$$
3
IIT-JEE 1994
MCQ (Single Correct Answer)
+1
-0.25
The function defined by $$f\left( x \right) = \left( {x + 2} \right){e^{ - x}}$$
A
decreasing for all $$x$$
B
decreasing in $$\left( { - \infty , - 1} \right)$$ and increasing in $$\left( { - 1,\infty } \right)$$
C
increasing for all $$x$$
D
decreasing in $$\left( { - 1,\infty } \right)$$ and increasing in $$\left( { - \infty , - 1} \right)$$
4
IIT-JEE 1994
MCQ (Single Correct Answer)
+2
-0.5
Let $$0 < x < {\pi \over 4}$$ then $$\left( {\sec 2x - \tan 2x} \right)$$ equals
A
$$\tan \left[ {x - {\pi \over 4}} \right]$$
B
$$\tan \left[ {{\pi \over 4} - x} \right]$$
C
$$\tan \left[ {x + {\pi \over 4}} \right]$$
D
$${\tan ^2}\left[ {x + {\pi \over 4}} \right]$$
JEE Advanced Papers
EXAM MAP