1
IIT-JEE 1991
Subjective
+4
-0
If $$'f$$ is a continuous function with $$\int\limits_0^x {f\left( t \right)dt \to \infty } $$ as $$\left| x \right| \to \infty ,$$ then show that every line $$y=mx$$ IIT-JEE 1991 Mathematics - Application of Integration Question 15 English
intersects the curve $${y^2} + \int\limits_0^x {f\left( t \right)dt = 2!} $$
2
IIT-JEE 1991
MCQ (More than One Correct Answer)
+2
-0.5
For any two events $$A$$ and $$B$$ in a simple space
A
$$P\left( {A/B} \right) \ge {{P\left( A \right) + P\left( B \right) - 1} \over {P\left( B \right)}},P\left( B \right) \ne 0$$ is always true
B
$$P\left( {A \cap \overline B } \right) = P\left( A \right) - P\left( {A \cap B} \right)\,\,$$ does not hold
C
$$P\left( {A \cup B} \right) = 1 - P\left( {\overline A } \right)P\left( {\overline B } \right),$$ if $$A$$ and $$B$$ are independent
D
$$P\left( {A \cup B} \right) = 1 - P\left( {\overline A } \right)P\left( {\overline B } \right),$$ if $$A$$ and $$B$$ are disjoint.
JEE Advanced Papers
EXAM MAP