1
IIT-JEE 1984
Subjective
+4
-0
Given $${s_n} = 1 + q + {q^2} + ...... + {q^2};$$
$${S_n} = 1 + {{q + 1} \over 2} + {\left( {{{q + 1} \over 2}} \right)^2} + ........ + {\left( {{{q + 1} \over 2}} \right)^n}\,\,\,,q \ne 1$$
Prove that $${}^{n + 1}{C_1} + {}^{n + 1}{C_2}{s_1} + {}^{n + 1}{C_3}{s_2} + ..... + {}^{n + 1}{C_n}{s_n} = {2^n}{S_n}$$
2
IIT-JEE 1984
Fill in the Blanks
+2
-0
The sum of integers from 1 to 100 that are divisible by 2 or 5 is ............
3
IIT-JEE 1984
Subjective
+2
-0
If $$a > 0,\,b > 0$$ and $$\,c > 0,$$ prove that $$\,c > 0,$$ prove that $$\left( {a + b + c} \right)\left( {{1 \over a} + {1 \over b} + {1 \over c}} \right) \ge 9$$
4
IIT-JEE 1984
Subjective
+2
-0
If $$n$$ is a natural number such that
$$n = {p_1}{}^{{\alpha _1}}{p_2}{}^{{\alpha _2}}.{p_3}{}^{{\alpha _3}}........{p_k}{}^{{\alpha _k}}$$ and $${p_1},{p_2},\,\,......,\,{p_k}$$ are distinct primes, then show that $$In$$ $$n \ge k$$ $$in$$ 2
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12