1
IIT-JEE 1984
Fill in the Blanks
+2
-0
The lines 3x - 4y + 4 = 0 and 6x - 8y - 7 = 0 are tangents to the same circle. The radius of this circle is ........................................
2
IIT-JEE 1984
MCQ (Single Correct Answer)
+2
-0.5
The locus of the mid-point of a chord of the circle $${x^2} + {y^2} = 4$$ which subtends a right angle at the origin is
3
IIT-JEE 1984
Subjective
+4
-0
The abscissa of the two points A and B are the roots of the equation $${x^2}\, + \,2ax\, - {b^2} = 0$$ and their ordinates are the roots of the equation $${x^2}\, + \,2px\, - {q^2} = 0$$. Find the equation and the radius of the circle with AB as diameter.
4
IIT-JEE 1984
Subjective
+4
-0
If $$\alpha $$ be a repeated root of a quadratic equation $$f(x)=0$$ and $$A(x), B(x)$$ and $$C(x)$$ be polynomials of degree $$3$$, $$4$$ and $$5$$ respectively,
then show that $$\left| {\matrix{ {A\left( x \right)} & {B\left( x \right)} & {C\left( x \right)} \cr {A\left( \alpha \right)} & {B\left( \alpha \right)} & {C\left( \alpha \right)} \cr {A'\left( \alpha \right)} & {B'\left( \alpha \right)} & {C'\left( \alpha \right)} \cr } } \right|$$ is
divisible by $$f(x)$$, where prime denotes the derivatives.
then show that $$\left| {\matrix{ {A\left( x \right)} & {B\left( x \right)} & {C\left( x \right)} \cr {A\left( \alpha \right)} & {B\left( \alpha \right)} & {C\left( \alpha \right)} \cr {A'\left( \alpha \right)} & {B'\left( \alpha \right)} & {C'\left( \alpha \right)} \cr } } \right|$$ is
divisible by $$f(x)$$, where prime denotes the derivatives.
Paper analysis
Total Questions
Chemistry
15
Mathematics
36
Physics
5
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006
IIT-JEE 2006 Screening
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004 Screening
IIT-JEE 2004
IIT-JEE 2003 Screening
IIT-JEE 2003
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001 Screening
IIT-JEE 2001
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998 Screening
IIT-JEE 1998
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995 Screening
IIT-JEE 1995
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978