1
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The general solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} - 5y = 0\,\,\,$$ in terms of arbitrary constants $${K_1}$$ and $${K_2}$$ is
A
$${K_1}{e^{\left( { - 1 + \sqrt 6 } \right)x}} + {K_2}{e^{\left( { - 1 - \sqrt 6 } \right)x}}$$
B
$${K_1}{e^{\left( { - 1 + \sqrt 8 } \right)x}} + {K_2}{e^{\left( { - 1 - \sqrt 8 } \right)x}}$$
C
$${K_1}{e^{\left( { - 2 + \sqrt 6 } \right)x}} + {K_2}{e^{\left( { - 2 - \sqrt 6 } \right)x}}$$
D
$${K_1}{e^{\left( { - 2 + \sqrt 8 } \right)x}} + {K_2}{e^{\left( { - 2 - \sqrt 8 } \right)x}}$$
2
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The residues of a function $$f\left( z \right) = {1 \over {\left( {z - 4} \right){{\left( {z + 1} \right)}^3}}}$$ are
A
$${{ - 1} \over {27}}$$ and $${{ - 1} \over {125}}$$
B
$${1 \over {125}}$$ and $${{ - 1} \over {125}}$$
C
$${{ - 1} \over {27}}$$ and $${1 \over 5}$$
D
$${1 \over {125}}$$ and $${{ - 1} \over 5}$$
3
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
An integral $${\rm I}$$ over a counter clock wise circle $$C$$ is given by $${\rm I} = \oint\limits_c {{{{z^2} - 1} \over {{z^2} + 1}}} \,\,{e^z}\,dz$$
If $$C$$ is defined as $$\left| z \right| = 3,$$ then the value of $${\rm I}$$ is
A
$$ - \pi i\,\,\sin \left( 1 \right)$$
B
$$ - 2\pi i\,\,\sin \left( 1 \right)$$
C
$$ - 3\pi i\,\,\sin \left( 1 \right)$$
D
$$ - 4\pi i\,\,\sin \left( 1 \right)$$
4
GATE ECE 2017 Set 2
Numerical
+1
-0
In the circuit shown, $$V$$ is a sinusoidal voltage source. The current $$I$$ is in phase with voltage $$V$$. The ratio $${{{\rm{Amplitude of voltage across the capacitor }}} \over {{\rm{Amplitude of voltage across the resistor }}}}$$ is ______. GATE ECE 2017 Set 2 Network Theory - Sinusoidal Steady State Response Question 35 English
Your input ____
EXAM MAP