1
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The general solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} + 2{{dy} \over {dx}} - 5y = 0\,\,\,$$ in terms of arbitrary constants $${K_1}$$ and $${K_2}$$ is
A
$${K_1}{e^{\left( { - 1 + \sqrt 6 } \right)x}} + {K_2}{e^{\left( { - 1 - \sqrt 6 } \right)x}}$$
B
$${K_1}{e^{\left( { - 1 + \sqrt 8 } \right)x}} + {K_2}{e^{\left( { - 1 - \sqrt 8 } \right)x}}$$
C
$${K_1}{e^{\left( { - 2 + \sqrt 6 } \right)x}} + {K_2}{e^{\left( { - 2 - \sqrt 6 } \right)x}}$$
D
$${K_1}{e^{\left( { - 2 + \sqrt 8 } \right)x}} + {K_2}{e^{\left( { - 2 - \sqrt 8 } \right)x}}$$
2
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The residues of a function $$f\left( z \right) = {1 \over {\left( {z - 4} \right){{\left( {z + 1} \right)}^3}}}$$ are
A
$${{ - 1} \over {27}}$$ and $${{ - 1} \over {125}}$$
B
$${1 \over {125}}$$ and $${{ - 1} \over {125}}$$
C
$${{ - 1} \over {27}}$$ and $${1 \over 5}$$
D
$${1 \over {125}}$$ and $${{ - 1} \over 5}$$
3
GATE ECE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
An integral $${\rm I}$$ over a counter clock wise circle $$C$$ is given by $${\rm I} = \oint\limits_c {{{{z^2} - 1} \over {{z^2} + 1}}} \,\,{e^z}\,dz$$
If $$C$$ is defined as $$\left| z \right| = 3,$$ then the value of $${\rm I}$$ is
A
$$ - \pi i\,\,\sin \left( 1 \right)$$
B
$$ - 2\pi i\,\,\sin \left( 1 \right)$$
C
$$ - 3\pi i\,\,\sin \left( 1 \right)$$
D
$$ - 4\pi i\,\,\sin \left( 1 \right)$$
4
GATE ECE 2017 Set 2
Numerical
+1
-0
In the circuit shown, $$V$$ is a sinusoidal voltage source. The current $$I$$ is in phase with voltage $$V$$. The ratio $${{{\rm{Amplitude of voltage across the capacitor }}} \over {{\rm{Amplitude of voltage across the resistor }}}}$$ is ______. GATE ECE 2017 Set 2 Network Theory - Sinusoidal Steady State Response Question 33 English
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12