1
GATE ECE 1997
+2
-0.6
In the signal flow graph of Fig. y/x equals
A
3
B
5/2
C
2
D
None of the above
2
GATE ECE 1997
Subjective
+5
-0
Following fig. shows the block diagram representation of control system. The system in block A has an impulse response h(t ) = e−t u(t ). The system in block B has an impulse response h(t ) = e−2t u(t ). The block 'K' amplifies its inputs by a factor k. For the overall system with input x(t) and output y(t). (a) Find the transfer function $$\frac{y\left(s\right)}{x\left(s\right)}$$ when k =1.
(b) Find the impulse response when k = 0.
(c) Find the values of k for which the system becomes unstable.
3
GATE ECE 1997
+2
-0.6
A certain linear time invariant system has the state and the output equations given below $$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr } } \right] = \left[ {\matrix{ 1 & { - 1} \cr 0 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right] + \left[ {\matrix{ 0 \cr 1 \cr } } \right]u$$$$$y = \left[ {\matrix{ 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right], if$$$ $${x_1}\left( 0 \right) =1 ,{x_2}\left( 0 \right) = - 1,$$ $$u\left( 0 \right) = 0,$$ then $${{dy} \over {dt}}{|_{t = 0}}$$ is
A
1
B
-1
C
0
D
None of the above
4
GATE ECE 1997
Subjective
+5
-0

For the circuit shown in the figure, choose state variables as $${x_{1,}}{x_{2,}}{x_3}$$ to be $${i_{L1}}\left( t \right),{v_{c2}}\left( t \right),{i_{L3}}\left( t \right)$$

Wriote the state equations

$$\left[ {\matrix{ {\mathop {{x_1}}\limits^ \bullet } \cr {\mathop {{x_2}}\limits^ \bullet } \cr {\mathop {{x_3}}\limits^ \bullet } \cr } } \right] = A\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + B\left[ {e\left( t \right)} \right]$$\$
GATE ECE Papers
2023
2022
2021
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET