1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two light rays having the same wavelength ' $\lambda$ ' in vacuum are in phase initially. Then, the first ray travels a path ' $\mathrm{L}_1$ ' through a medium of refractive index ' $\mu_1$ ' while the second ray travels a path of length ' $L_2$ ' through a medium of refractive index ' $\mu_2$ '. The two waves are then combined to observe interference. The phase difference between the two waves is

A
$\frac{2 \pi}{\lambda}\left(\mu_1 L_1-\mu_2 L_2\right)$
B
$\frac{2 \pi}{\lambda}\left(L_2-L_1\right)$
C
$\frac{2 \pi}{\lambda}\left(\frac{\mathrm{~L}_1}{\mu_1}-\frac{\mathrm{L}_2}{\mu_2}\right)$
D
$\frac{2 \pi}{\lambda}\left(\mu_2 \mathrm{~L}_1-\mu_1 \mathrm{~L}_2\right)$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

In Young's double slit experiment, the slits are separated by 0.6 mm and screen is placed at a distance of 1.2 m from slit. It is observed that the tenth bright fringe is at a distance of 8.85 mm from the third dark fringe on the same side. The wavelength of light used is

A
5440 $$\mathop A\limits^o $$
B
5890 $$\mathop A\limits^o $$
C
5900 $$\mathop A\limits^o $$
D
6630 $$\mathop A\limits^o $$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In a diffraction pattern due to single slit of width ' $a$ ', the first minimum is observed at an angle $30^{\circ}$ when light of wavelength $5000 \mathop A\limits^o$ is incident on the slit. The first secondary maximum is observed at an angle $\left[\sin 30=\frac{1}{2}\right]$

A
$\sin ^{-1}\left(\frac{1}{2}\right)$
B
$\sin ^{-1}\left(\frac{3}{4}\right)$
C
$\sin ^{-1}\left(\frac{1}{4}\right)$
D
$\sin ^{-1}\left(\frac{3}{5}\right)$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In biprism experiment, if $5^{\text {th }}$ bright band with wavelength $\lambda_1$ coincides with $6^{\text {th }}$ dark band with wavelength $\lambda_2$ then the ratio $\left(\lambda_1 / \lambda_2\right)$ is

A
$\frac{7}{9}$
B
$\frac{10}{11}$
C
$\frac{11}{10}$
D
$\frac{9}{7}$
MHT CET Subjects
EXAM MAP