1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

A
$\left(\frac{-x^4+1}{x^4}\right)^{\frac{1}{4}}+c$, where $c$ is constant of integration.
B
$\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is constant of integration.
C
$-\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is constant of integration.
D
$-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}}+c$, where $c$ is constant of integration.
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) \mathrm{d} x=$$

A
$2 x \tan ^{-1} x-\log \left(1+x^2\right)+\mathrm{c}$, where c is a constant of integration.
B
$2\left(x \tan ^{-1} x-\log \left(1+x^2\right)\right)+\mathrm{c}$, where c is a constant of integration.
C
$x \tan ^{-1} x+\log \left(1+x^2\right)+\mathrm{c}$, where c is a constant of integration.
D
$2\left(x \tan ^{-1} x+\log \left(1+x^2\right)\right)+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If, $\int \frac{d \theta}{\cos ^2 \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{\mathrm{e}}|\mathrm{f}(\theta)|+\mathrm{c}$ (where c is a constant of integration), then the ordered pair $(\lambda,|f(\theta)|)$ is equal to

A
$(1,|1+\tan \theta|)$
B
$(1,1-1-\tan \theta \mid)$
C
$(-1,|1+\tan \theta|)$
D
$(-1,|1-\tan \theta|)$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\quad \int(2 x+4) \sqrt{x-1} \mathrm{~d} x=\mathrm{a}(x-1)^{\frac{5}{2}}+\mathrm{b}(x-1)^{\frac{3}{2}}+\mathrm{c}$, (where c is a constant of integration), then the value of $a+b$ is

A
$\frac{46}{5}$
B
$\frac{16}{15}$
C
$\frac{24}{5}$
D
$\frac{13}{15}$
MHT CET Subjects
EXAM MAP