1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The solution for minimizing the function $\mathrm{z}=x+y$ under an L.P.P. with constraints $x+y \geq 2, x+2 y \leq 8, y \leq 3, x, y \geq 0$ is

A

at the point $(0,3)$

B

at the point $(8,0)$

C

at infinite number of points but bounded set

D

at unbounded set

2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In L.P.P., the maximum value of objective function $\mathrm{Z}=6 x+3 y$ subject to constraints $x+y \leq 5, x+2 y \geq 4,4 x+y \leq 12, x, y \geq 0$ is

A
$\frac{132}{7}$
B
22
C
15
D
$\frac{122}{7}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
The solution set of the constraints $|x-y| \leq 1, x, y \geq 0$ is
A
a finite set
B
an unbounded set
C
a convex polygon
D
such that feasible region does not exist
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0
The difference between the maximum value and minimum value of objective function $\mathrm{z}=3 x+5 y$ subject to constraints $x+3 y \leq 60$, $x+y \geq 10, x-y \geq 0, x, y \geq 0$ is
A
60
B
20
C
40
D
80
MHT CET Subjects
EXAM MAP