1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function to be maximized is given by $Z=3 x+2 y$. The feasible region for this function is the shaded region given below, then the linear constraints for this region are given by

MHT CET 2024 10th May Morning Shift Mathematics - Linear Programming Question 9 English

A
$\begin{aligned} 3 x+8 y \leq 24,4 x+5 y \leq 20,5 x+3 y \geq 15 x \geq 0, y \geq 0\end{aligned}$
B
$\begin{aligned} 3 x+8 y \geq 24,4 x+5 y \geq 20,5 x+3 y \leq 15, x \geq 0, y \geq 0\end{aligned}$
C
$3 x+8 y \leq 24,4 x+5 y \geq 20,5 x+3 y \geq 15 x \geq 0, y \geq 0$
D
$3 x+8 y \geq 24,4 x+5 y \leq 20,5 x+3 y \leq 15 x \geq 0, y \geq 0$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $z=4 x+2 y$, subject to the constraints $3 x+4 y \geqslant 12, x+y \leqslant 5, x, y \geqslant 0$ is

A
8
B
20
C
24
D
16
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $z=x+y$, subjected to $x+y \leq 10,5 x+3 y \geq 15, x \leq 6, x, y \geq 0$

A
occurs only at unique point.
B
occurs only at two distinct points.
C
occurs at infinitely many points.
D
does not exist.
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of the objective function $\mathrm{z}=4 x+6 y$ subject to $3 x+2 y \leq 12, x+y \geq 4, x$, $y \geq 0$ is

A
24
B
46
C
56
D
36
MHT CET Subjects
EXAM MAP