1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The L.P.P. , minimize $z=30 x+20 y, x+y \leq 8$, $x+2 y \geq 4,6 x+4 y \geq 12, x \geqslant 0, y \geqslant 0$ has

A
a unique solution
B
infinitely many solutions
C
minimum value at $(4,0)$
D
minimum value at $(8,0)$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A scholarship amount is given by $\mathrm{z}=550 x+300 y$ and is to be distributed among $x$ boys and $y$ girls. From the graph given below the maximum amount of scholarship is __________

MHT CET 2025 20th April Evening Shift Mathematics - Linear Programming Question 4 English
A
7250
B
9250
C
4250
D
5750
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shaded region in the following figure represents a solution set of

MHT CET 2025 20th April Morning Shift Mathematics - Linear Programming Question 6 English
A
$x-y \geq 0, x+y \geq 0$
B
$x-y \leq 0, x+y \geq 0$
C
$x-y \geq 0, x+y \leq 0$
D
$x-y \leq 0, x+y \leq 0$
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The feasible region for the constraints $x-2 \leqslant y, x \geqslant y-1, x \geqslant 2, y \leqslant 4, x, y \geqslant 0$, is _________

A
MHT CET 2025 19th April Evening Shift Mathematics - Linear Programming Question 7 English Option 1
B
MHT CET 2025 19th April Evening Shift Mathematics - Linear Programming Question 7 English Option 2
C
MHT CET 2025 19th April Evening Shift Mathematics - Linear Programming Question 7 English Option 3
D
MHT CET 2025 19th April Evening Shift Mathematics - Linear Programming Question 7 English Option 4
MHT CET Subjects
EXAM MAP