1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution set for minimizing the function $\mathrm{z}=x+y$ with constraints $x+y \geqslant 2, x+2 y \leqslant 8, y \leqslant 3, x, y \geqslant 0$ contains

A
$x=0, y=3$
B
$x=8, y=0$
C
infinitely many points
D
$x=2, y=3$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The L.P.P. , minimize $z=30 x+20 y, x+y \leq 8$, $x+2 y \geq 4,6 x+4 y \geq 12, x \geqslant 0, y \geqslant 0$ has

A
a unique solution
B
infinitely many solutions
C
minimum value at $(4,0)$
D
minimum value at $(8,0)$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A scholarship amount is given by $\mathrm{z}=550 x+300 y$ and is to be distributed among $x$ boys and $y$ girls. From the graph given below the maximum amount of scholarship is __________

MHT CET 2025 20th April Evening Shift Mathematics - Linear Programming Question 4 English
A
7250
B
9250
C
4250
D
5750
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shaded region in the following figure represents a solution set of

MHT CET 2025 20th April Morning Shift Mathematics - Linear Programming Question 6 English
A
$x-y \geq 0, x+y \geq 0$
B
$x-y \leq 0, x+y \geq 0$
C
$x-y \geq 0, x+y \leq 0$
D
$x-y \leq 0, x+y \leq 0$
MHT CET Subjects
EXAM MAP