1
MHT CET 2021 21th September Evening Shift
+2
-0

The objective function $$z=4 x+5 y$$ subjective to $$2 x+y \geq 7 ; 2 x+3 y \leq 15 ; y \leq 3, x \geq 0 ; y \geq 0$$ has minimum value at the point.

A
on the line $$2 x+3 y=15$$
B
on X-axis
C
on Y-axis
D
origin
2
MHT CET 2021 21th September Morning Shift
+2
-0

The shaded figure given below is the solution set for the linear inequations. Choose the correct option.

A
$$3 x+4 y \geq 18 ; x-6 y \leq 3 ; 2 x+3 y \geq 3 ; 7 x-14 y \leq 14 ; x \geq 0 ; y \geq 0$$
B
$$3 \mathrm{x}+4 \mathrm{y} \leq 18 ; \mathrm{x}-6 \mathrm{y} \leq 3 ; 2 \mathrm{x}+3 \mathrm{y} \leq 3 ;-7 \mathrm{x}+14 \mathrm{y} \geq 14 ; \mathrm{x} \geq 0 ; \mathrm{y} \geq 0$$
C
$$3 \mathrm{x}+4 \mathrm{y} \leq 18 ; \mathrm{x}-6 \mathrm{y} \leq 3 ; 2 \mathrm{x}+3 \mathrm{y} \geq 3 ;-7 \mathrm{x}+14 \mathrm{y} \leq 14 ; \mathrm{x} \geq 0; \mathrm{y} \geq 0$$
D
$$3 x+4 y \geq-18 ; x-6 y \leq 3 ; 2 x+3 y \leq 3 ;-7 x+14 y \geq 14 ; x \geq 0 ; y \geq 0$$
3
MHT CET 2021 20th September Evening Shift
+2
-0

The solution set for the system of linear inequations $$x+y \geq 1 ; 7 x+9 y \leq 63 ; y \leq 5 ; x \leq 6, x \geq 0$$ and $$y \geq 0$$ is represented graphically in the figure. What is the correct option?

A
B
C
D
4
MHT CET 2021 20th September Morning Shift
+2
-0

The shaded part of the given figure indicates the feasible region. Then the constraints are

A
$$x, y \geq 0 ; x-y \geq 0 ; x \leq 5 ; y \leq 3$$
B
$$x, y \geq 0 ; x-y \geq 0 ; x \leq 5 ; y \geq 3$$
C
$$x, y \geq 0 ; x+y \geq 0 ; x \geq 5 ; y \leq 3$$
D
$$x, y \geq 0 ; x-y \geq 0 ; x \geq 5 ; y \leq 3$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination