1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A production unit makes special type of metal chips by combining copper and brass. The standard weight of the chip must be at least 5 gms. The basic ingredients i.e. copper and brass cost ₹8 and ₹ 5 per gm. The durability considerations dictate that the metal chip must no contain more than 4 gms of brass and should contain minimum 2 gms of copper. Then the minimum cost of the metal chip satisfying the above conditions is

A
Rs.36
B
Rs.31
C
Rs.30
D
Rs.40
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For the following shaded region, the linear constraints are

MHT CET 2024 11th May Morning Shift Mathematics - Linear Programming Question 17 English

A
$x-y \leq 0,-x+3 y \leq 3, x \geq 0, y \geq 0$
B
$x-y \geq 0,-x+3 y \geq 3, x \geq 0, y \geq 0$
C
$x-y \geq 0,-x+3 y \leq 3, x \geq 0, y \geq 0$
D
$x-y \leq 0,-x+3 y=3, x \geq 0, y \geq 0$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The graphical solution set of the system of inequations $x+y \geq 1,7 x+9 y \leq 63, y \leq 5, x \leq 6$, $x \geq 0, y \geq 0$ is represented by

MHT CET 2024 10th May Evening Shift Mathematics - Linear Programming Question 19 English

A
Fig. 1
B
Fig. 2
C
Fig. 3
D
Fig. 4
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function to be maximized is given by $Z=3 x+2 y$. The feasible region for this function is the shaded region given below, then the linear constraints for this region are given by

MHT CET 2024 10th May Morning Shift Mathematics - Linear Programming Question 18 English

A
$\begin{aligned} 3 x+8 y \leq 24,4 x+5 y \leq 20,5 x+3 y \geq 15 x \geq 0, y \geq 0\end{aligned}$
B
$\begin{aligned} 3 x+8 y \geq 24,4 x+5 y \geq 20,5 x+3 y \leq 15, x \geq 0, y \geq 0\end{aligned}$
C
$3 x+8 y \leq 24,4 x+5 y \geq 20,5 x+3 y \geq 15 x \geq 0, y \geq 0$
D
$3 x+8 y \geq 24,4 x+5 y \leq 20,5 x+3 y \leq 15 x \geq 0, y \geq 0$
MHT CET Subjects
EXAM MAP