1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The correct constraints for the given feasible region are ….

A
$\quad y-x \geqslant 1, x+5 y \leqslant 10, x+y \geqslant 2, x, y \geqslant 0$
B
$\quad y-x \leqslant 1,2 x+5 y \leqslant 10, x+y \geqslant 1, x, y \geqslant 0$
C
$\quad y-x \geqslant 1,2 x+5 y \leqslant 10, x+y \geqslant 1, x, y \geqslant 0$
D
$\quad x-y \leqslant 1,2 x+5 y \geqslant 10, x+y \leqslant 1, x, y \geqslant 0$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the difference between the maximum and minimum values of the objective function $\mathrm{z}=7 x-8 y$, subject to the constraints $x+y \leqslant 20, y \geqslant 5, x, y \geqslant 0$ is $5 \mathrm{k}+200$, then the value of k is

A
3
B
4
C
5
D
6
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution set for minimizing the function $\mathrm{z}=x+y$ with constraints $x+y \geqslant 2, x+2 y \leqslant 8, y \leqslant 3, x, y \geqslant 0$ contains

A
$x=0, y=3$
B
$x=8, y=0$
C
infinitely many points
D
$x=2, y=3$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The L.P.P. , minimize $z=30 x+20 y, x+y \leq 8$, $x+2 y \geq 4,6 x+4 y \geq 12, x \geqslant 0, y \geqslant 0$ has

A
a unique solution
B
infinitely many solutions
C
minimum value at $(4,0)$
D
minimum value at $(8,0)$
MHT CET Subjects
EXAM MAP