1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

The moment of inertia of a solid sphere of mass ' $m$ ' and radius ' $R$ ' about its diametric axis is ' $I$ '. Its moment of inertia about a tangent in the plane is

A
2.5 I
B
3.0 I
C
3.5 I
D
4 I
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

Two discs of moment of inertia ' $\mathrm{I}_1$ ' and ' $\mathrm{I}_2$ ' and angular speeds ' $\omega_1$ ' and ' $\omega_2$ ' are rotating along the collinear axes passing through their centre of mass and perpendicular to their plane. If the two discs are made to rotate together along the same axis. The rotational kinetic energy of the system will be

A
$\frac{I_1 \omega_1+I_2 \omega_2}{2\left(I_1+I_2\right)^2}$
B
$\frac{\left(I_1 \omega_1-I_2 \omega_2\right)^2}{2\left(I_1+I_2\right)}$
C
$\quad \frac{\left(I_1 \omega_1+I_2 \omega_2\right)^2}{2\left(I_1-I_2\right)}$
D
$\frac{\left(I_1 \omega_1+I_2 \omega_2\right)^2}{2\left(I_1+I_2\right)}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

Four particles each of mass M are placed at the corners of a square of side L . The radius of gyration of the system about an axis perpendicular to the square and passing through its centre is

A
$\frac{\mathrm{L}}{2}$
B
$\frac{\mathrm{L}}{\sqrt{2}}$
C
$\quad 2 \mathrm{~L}$
D
$\frac{\mathrm{L}}{4}$
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

What is the linear velocity if angular velocity $\vec{\omega}=3 \hat{i}-4 \hat{j}+\hat{k}$ and radius $\vec{r}=(5 \hat{i}-6 \hat{j}+6 \hat{k})$ ?

A
$(-30 \hat{\mathrm{i}}-13 \hat{\mathrm{j}}-38 \hat{\mathrm{k}})$
B
$(8 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})$
C
$\quad(-18 \hat{\mathrm{i}}-13 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
D
$(-2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})$
MHT CET Subjects
EXAM MAP