The moment of inertia of a circular disc of radius $$2 \mathrm{~m}$$ and mass $$1 \mathrm{~kg}$$ about an axis XY passing through its centre of mass and perpendicular to the plane of the disc is $$2 \mathrm{~kg} \mathrm{~m}^2$$. The moment of inertia about an axis parallel to the axis $$\mathrm{XY}$$ and passing through the edge of the disc is
The moment of inertia of a body about a given axis is $$1.2 \mathrm{~kg} / \mathrm{m}^3$$. Initially the body is at rest. In order to produce rotational kinetic energy of $$1500 \mathrm{~J}$$, an angular acceleration of $$25 \mathrm{rad} / \mathrm{s}^2$$ must be applied about an axis for a time duration of
A disc of radius 0.4 metre and mass 1 kg rotates about an axis passing through its centre and perpendicular to its plane. The angular acceleration is 10 rad s$$^{-2}$$. The tangential force applied to the rim of the disc is
The ratio of radii of gyration of a circular ring and circular disc of the same mass and radius, about an axis passing through their centres and perpendicular to their planes is