1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The earth is assumed to be a sphere of radius ' $R$ ' and mass ' $M$ ' having period of rotation ' $T$ '. The angular momentum of earth about its axis of rotation is

A
$\frac{2 \pi \mathrm{MR}^2}{5 \mathrm{~T}}$
B
$\frac{4 \pi \mathrm{MR}^2}{5 \mathrm{~T}}$
C
$\frac{\mathrm{MR}^2 \mathrm{~T}}{2 \pi}$
D
$\frac{\mathrm{MR}^2 \mathrm{~T}}{4 \pi}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Two loops ' $A$ ' and ' $B$ ' of radii ' $R_1$ ' and ' $R_2$ ' are made from uniform wire. If moment of inertia of ' A ' is ' $\mathrm{I}_{\mathrm{A}}$ ' and that ' B ' is ' $\mathrm{I}_{\mathrm{B}}$ ', then $\mathrm{R}_2 / \mathrm{R}_1$ is $\left[\frac{\mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}=27\right]$

A
$1: 6$
B
$1: 4$
C
$1: 3$
D
$1: 2$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In case of rotational dynamics, which one of the following statements is correct?

[$\vec{\omega}=$ angular velocity, $\overrightarrow{\mathrm{v}}=$ linear velocity

$\overrightarrow{\mathbf{r}}=$ radius vector, $\vec{\alpha}=$ angular acceleration

$\overrightarrow{\mathrm{a}}=$ linear acceleration, $\overrightarrow{\mathrm{L}}=$ angular momentum

$\overrightarrow{\mathrm{p}}=$ linear momentum, $\bar{\tau}=$ torque,

$\overrightarrow{\mathrm{f}}=$ centripetal force]

A
$\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{r}} \times \vec{\omega}, \overrightarrow{\boldsymbol{\alpha}}=\overrightarrow{\mathbf{r}} \times \vec{a}, \vec{L}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}, \vec{\tau}=\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{r}}$
B
$\overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}, \vec{\alpha}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{r}}, \vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{f}}$
C
$\overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}, \vec{\alpha}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}, \vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{f}}$
D
$\overrightarrow{\mathrm{v}}=\vec{\omega} \times \overrightarrow{\mathrm{r}}, \vec{\alpha}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}}, \vec{\tau}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{f}}$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Ratio of radius of gyration of a circular disc to that of circular ring each of same mass and radius around their respective axes is

A
$\sqrt{2}: 1$
B
$\sqrt{2}: \sqrt{3}$
C
$\sqrt{3} : \sqrt{2}$
D
$1: \sqrt{2}$
MHT CET Subjects
EXAM MAP