1
MHT CET 2021 20th September Morning Shift
+1
-0

A solid sphere of mass $$\mathrm{M}$$, radius $$\mathrm{R}$$ has moment of inertia '$$\mathrm{I}$$' about its diameter. It is recast into a disc of thickness 't' whose moment of inertia about an axis passing through its edge and perpendicular to its plane remains 'I'. Radius of the disc will be

A
$$\frac{4 R}{\sqrt{11}}$$
B
$$\frac{3 R}{4}$$
C
$$\frac{2 R}{\sqrt{15}}$$
D
$$\frac{2 R}{3}$$
2
MHT CET 2021 20th September Morning Shift
+1
-0

Two bodies rotate with kinetic energies 'E$$_1$$' and 'E$$_2$$'. Moments of inertia about their axis of rotation are 'I$$_1$$' and 'I$$_2$$'. If $$\mathrm{I_1=\frac{I_2}{3}}$$ and E$$_1$$ = 27 E$$_2$$, then the ratio of angular momenta 'L$$_1$$' to 'L$$_2$$' is

A
1 : 3
B
3 : 1
C
1 : 1
D
2 : 1
3
MHT CET 2021 20th September Morning Shift
+1
-0

A disc of radius 0.4 m and mass one kg rotates about an axis passing through its centre and perpendicular to its plane. The angular acceleration of the disc is 10 rad/s$$^2$$. The tangential force applied to the rim of the disc is

A
4 N
B
1 N
C
2 N
D
8 N
4
MHT CET 2020 16th October Morning Shift
+1
-0

If there is a change of angular momentum from $$1 \mathrm{j}$$-$$\mathrm{s}$$ to $$4 \mathrm{j}$$-$$\mathrm{s}$$ in $$4 \mathrm{~s}$$, then the torque

A
$$\left(\frac{5}{4}\right) \mathrm{J}$$
B
$$\left(\frac{3}{4}\right) \mathrm{J}$$
C
$$1 \mathrm{~J}$$
D
$$\left(\frac{4}{3}\right) \mathrm{J}$$
EXAM MAP
Medical
NEET