1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The cosine of the angle included between the lines $$\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$$ and $$\mathbf{r}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\mu(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$$ where $$\lambda, \mu \in R$$ is.

A
$$\frac{3}{21}$$
B
$$\frac{17}{21}$$
C
$$\frac{13}{21}$$
D
$$\frac{11}{21}$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the foot of perpendicular drawn from the origin to the plane is $$(3,2,1)$$, then the equation of plane is

A
$$3 x+2 y-z=12$$
B
$$3 x-2 y-z=12$$
C
$$3 x+2 y-z=14$$
D
$$3 x+2 y+z=14$$
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the line $$r =(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+\hat{\mathbf{j}})$$ and the plane $$\mathbf{r} \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=8$$ is

A
$$\sin ^{-1}\left(\frac{2 \sqrt{7}}{\sqrt{5}}\right)$$
B
$$\sin ^{-1}\left(\frac{\sqrt{5}}{2 \sqrt{7}}\right)$$
C
$$\sin ^{-1}\left(\frac{3 \sqrt{7}}{\sqrt{5}}\right)$$
D
$$\sin ^{-1}\left(\frac{\sqrt{7}}{3 \sqrt{5}}\right)$$
4
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

The direction cosines of a line which is perpendicular to lines whose direction ratios are $$3,-2,4$$ and $$1,3,-2$$ are

A
$$\frac{4}{\sqrt{297}}, \frac{5}{\sqrt{297}}, \frac{16}{\sqrt{297}}$$
B
$$\frac{8}{\sqrt{285}}, \frac{10}{\sqrt{285}}, \frac{11}{\sqrt{285}}$$
C
$$\frac{-8}{\sqrt{285}}, \frac{10}{\sqrt{285}}, \frac{11}{\sqrt{285}}$$
D
$$\frac{-8}{\sqrt{285}}, \frac{-10}{\sqrt{285}}, \frac{11}{\sqrt{285}}$$
MHT CET Subjects
EXAM MAP