1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The centroid of tetrahedron with vertices $\mathrm{P}(5,-7,0), \mathrm{Q}(\mathrm{a}, 5,3), \mathrm{R}(4,-6, b)$ and $\mathrm{S}(6, \mathrm{c}, 2)$ is $(4,-3,2)$, then the value of $2 a+3 b+c$ is equal to

A
15
B
$-$7
C
7
D
$-$5
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A variable plane passes through the fixed point $(3,2,1)$ and meets $X, Y$ and $Z$ axes at points $A$, B and C respectively. A plane is drawn parallel to YZ - plane through A , a second plane is drawn parallel to ZX -plan through B , a third plane is drawn parallel to XY - plane through C . Then locus of the point of intersection of these three planes, is

A
  $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{11}{6}$
B
$\frac{x}{3}+\frac{y}{2}+\frac{z}{1}=1$
C
$\frac{3}{x}+\frac{2}{y}+\frac{1}{z}=1$
D
$x+y+z=6$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=\mathrm{z}$ is __________ units.

A
$3 \sqrt{10}$
B
$10 \sqrt{3}$
C
$\frac{10}{\sqrt{3}}$
D
$\frac{20}{3}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If for some $\alpha \in \mathbb{R}$, the lines $\mathrm{L}_1: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $\mathrm{L}_2: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line $L_2$ passes through the point

A
$(10,2,2)$
B
$(2,-10,-2)$
C
$(10,-2,-2)$
D
$(-2,10,2)$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12