1
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$\mathbf{P}$ and $\mathbf{Q}$ are two non-zero vectors inclined to each other at an angle ' $\theta$ '. ' $p$ ' and ' $q$ ' are unit vectors along $\mathbf{P}$ and $\mathbf{Q}$ respectively. The component of $\mathbf{Q}$ in the direction of $\mathbf{Q}$ will be

A
$P \cdot Q$
B
$\frac{P \times Q}{P}$
C
$\frac{P \cdot Q}{Q}$
D
$p \cdot q$
2
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The resultant $\mathbf{R}$ of $\mathbf{P}$ and $\mathbf{Q}$ is perpendicular to $\mathbf{P}$. Also $|\mathbf{P}|=|\mathbf{R}|$. The angle between $\mathbf{P}$ and $\mathbf{Q}$ is $\left[\tan 45^{\circ}=1\right]$

A
$\frac{5 \pi}{4}$
B
$\frac{7 \pi}{4}$
C
$\frac{\pi}{4}$
D
$\frac{3 \pi}{4}$
3
MHT CET 2019 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\sqrt{A^2+B^2}$ represents the magnitude of resultant of two vectors $(\mathbf{A}+\mathbf{B})$ and $(\mathbf{A}-\mathbf{B})$, then the angle between two vectors is

A
$\cos ^{-1}\left[-\frac{2\left(A^2-B^2\right)}{\left(A^2+B^2\right)}\right]$
B
$\cos ^{-1}\left[-\frac{A^2-B^2}{A^2 B^2}\right]$
C
$\cos ^{-1}\left[-\frac{\left(A^2+B^2\right)}{2\left(A^2-B^2\right)}\right]$
D
$\cos ^{-1}\left[-\frac{\left(A^2-B^2\right)}{A^2+B^2}\right]$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12