1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Three vectors are expressed as $\vec{a}=4 \hat{i}-\hat{j}, \vec{b}=-3 \hat{i}+2 \hat{j}$ and $\vec{c}=-\hat{k}$. The unit vector along the direction of sum of these vectors is

A
$\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{3}}$
B
$\quad \frac{1}{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
C
$\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
D
$\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\vec{A}=\hat{i}+\hat{j}+3 \hat{k}, \vec{B}=-\hat{i}+\hat{j}+4 \hat{k}$ and $\vec{C}=2 \hat{i}-2 \hat{j}-8 \hat{k}$, then the angle between the vectors $\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}}$ and $\overrightarrow{\mathrm{Q}}=(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})$ is (in degree)

A
$0^{\circ}$
B
$45^{\circ}$
C
$90^{\circ}$
D
$60^{\circ}$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

The resultant of two vectors $\vec{A}$ and $\vec{B}$ is $\vec{C}$. If the magnitude of $\vec{B}$ is doubled, the new resultant vector becomes perpendicular to $\vec{A}$, then the magnitude of $\overrightarrow{\mathrm{C}}$ is

A
4 B
B
3 B
C
B
D
2 B
4
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

The angle subtended by the vector $A=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+12 \hat{\mathbf{k}}$ with the $X$-axis is

A
$\cos ^{-1}\left(\frac{3}{13}\right)$
B
$\sin ^{-1}\left(\frac{3}{13}\right)$
C
$\sin ^{-1}\left(\frac{4}{13}\right)$
D
$\cos ^{-1}\left(\frac{4}{13}\right)$
MHT CET Subjects
EXAM MAP