$$ \begin{aligned} & \text { If }|\vec{a}|=\sqrt{26},|\vec{b}|=7 \\ & |\vec{a} \times \vec{b}|=35 \text {, find } \vec{a} \cdot \vec{b} \end{aligned} $$
Vector $\vec{A}$ of magnitude $5 \sqrt{3}$ units, another vector $\vec{B}$ of magnitude of 10 units are inclined to each other at an angle of $30^{\circ}$. The magnitude of vector product of the two vectors is $\left[\sin 30^{\circ}=\frac{1}{2}\right]$
If $\vec{P}=b \hat{i}+6 \hat{j}+\hat{k} \quad$ and $\quad \vec{Q}=\hat{i}-a \hat{j}+4 \hat{k} \quad$ are perpendicular to each other, also $3 \mathrm{~b}-\mathrm{a}=5$. The value of $a$ and $b$ is
Given $\quad \vec{A}=(2 \hat{i}-3 \hat{j}+\hat{k}), \quad \vec{B}=(3 \hat{i}+\hat{j}-2 \hat{k})$ and $\vec{C}=(3 \hat{i}+2 \hat{j}+\hat{k}) \cdot(\vec{A}+\vec{B}) \cdot \vec{C}$ will be