1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

Vector $\vec{A}$ of magnitude $5 \sqrt{3}$ units, another vector $\vec{B}$ of magnitude of 10 units are inclined to each other at an angle of $30^{\circ}$. The magnitude of vector product of the two vectors is $\left[\sin 30^{\circ}=\frac{1}{2}\right]$

A
$5 \sqrt{3}$ units
B
10 units
C
$25 \sqrt{3}$ units
D
75 units
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\vec{P}=b \hat{i}+6 \hat{j}+\hat{k} \quad$ and $\quad \vec{Q}=\hat{i}-a \hat{j}+4 \hat{k} \quad$ are perpendicular to each other, also $3 \mathrm{~b}-\mathrm{a}=5$. The value of $a$ and $b$ is

A
$\mathrm{a}=2, \mathrm{~b}=10$
B
$\mathrm{a}=1, \mathrm{~b}=2$
C
$\mathrm{a}=2, \mathrm{~b}=3$
D
$\mathrm{a}=4, \mathrm{~b}=3$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Given $\quad \vec{A}=(2 \hat{i}-3 \hat{j}+\hat{k}), \quad \vec{B}=(3 \hat{i}+\hat{j}-2 \hat{k})$ and $\vec{C}=(3 \hat{i}+2 \hat{j}+\hat{k}) \cdot(\vec{A}+\vec{B}) \cdot \vec{C}$ will be

A
10
B
12 c
C
18
D
20
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Given $\quad \vec{A}=(2 \hat{i}-3 \hat{j}+\hat{k}), \quad \vec{B}=(3 \hat{i}+\hat{j}-2 \hat{k})$ and $\vec{C}=(3 \hat{i}+2 \hat{j}+\hat{k}) \cdot(\vec{A}+\vec{B}) \cdot \vec{C}$ will be

A
10
B
12 c
C
18
D
20
MHT CET Subjects
EXAM MAP