1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\vec{P}=b \hat{i}+6 \hat{j}+\hat{k} \quad$ and $\quad \vec{Q}=\hat{i}-a \hat{j}+4 \hat{k} \quad$ are perpendicular to each other, also $3 \mathrm{~b}-\mathrm{a}=5$. The value of $a$ and $b$ is

A
$\mathrm{a}=2, \mathrm{~b}=10$
B
$\mathrm{a}=1, \mathrm{~b}=2$
C
$\mathrm{a}=2, \mathrm{~b}=3$
D
$\mathrm{a}=4, \mathrm{~b}=3$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Given $\quad \vec{A}=(2 \hat{i}-3 \hat{j}+\hat{k}), \quad \vec{B}=(3 \hat{i}+\hat{j}-2 \hat{k})$ and $\vec{C}=(3 \hat{i}+2 \hat{j}+\hat{k}) \cdot(\vec{A}+\vec{B}) \cdot \vec{C}$ will be

A
10
B
12 c
C
18
D
20
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Given $\quad \vec{A}=(2 \hat{i}-3 \hat{j}+\hat{k}), \quad \vec{B}=(3 \hat{i}+\hat{j}-2 \hat{k})$ and $\vec{C}=(3 \hat{i}+2 \hat{j}+\hat{k}) \cdot(\vec{A}+\vec{B}) \cdot \vec{C}$ will be

A
10
B
12 c
C
18
D
20
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A unit vector in the direction of resultant vector of $\vec{A}=-2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{B}=\hat{i}+2 \hat{j}-4 \hat{k}$ is

A
$\frac{-3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{\sqrt{35}}$
B
$\frac{\hat{i}+2 \hat{j}-4 \hat{k}}{\sqrt{35}}$
C
$\frac{-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{35}}$
D
$\frac{-\hat{\mathrm{i}}+5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}}{\sqrt{35}}$
MHT CET Subjects
EXAM MAP