1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A unit vector in the direction of resultant vector of $\vec{A}=-2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{B}=\hat{i}+2 \hat{j}-4 \hat{k}$ is

A
$\frac{-3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{\sqrt{35}}$
B
$\frac{\hat{i}+2 \hat{j}-4 \hat{k}}{\sqrt{35}}$
C
$\frac{-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{35}}$
D
$\frac{-\hat{\mathrm{i}}+5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}}{\sqrt{35}}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+1
-0

The three vector $\vec{A}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{B}=\hat{i}-3 \hat{j}+5 k$ and $\vec{C}=2 \hat{i}-\hat{j}+4 \hat{k}$ will form

A
isosceles triangle.
B
equilateral triangle.
C
no triangle.
D
right angled triangle.
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

Three vectors are expressed as $\vec{a}=4 \hat{i}-\hat{j}, \vec{b}=-3 \hat{i}+2 \hat{j}$ and $\vec{c}=-\hat{k}$. The unit vector along the direction of sum of these vectors is

A
$\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{3}}$
B
$\quad \frac{1}{3}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
C
$\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
D
$\frac{1}{\sqrt{2}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\vec{A}=\hat{i}+\hat{j}+3 \hat{k}, \vec{B}=-\hat{i}+\hat{j}+4 \hat{k}$ and $\vec{C}=2 \hat{i}-2 \hat{j}-8 \hat{k}$, then the angle between the vectors $\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}}$ and $\overrightarrow{\mathrm{Q}}=(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})$ is (in degree)

A
$0^{\circ}$
B
$45^{\circ}$
C
$90^{\circ}$
D
$60^{\circ}$
MHT CET Subjects
EXAM MAP