A unit vector in the direction of resultant vector of $\vec{A}=-2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{B}=\hat{i}+2 \hat{j}-4 \hat{k}$ is
The three vector $\vec{A}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{B}=\hat{i}-3 \hat{j}+5 k$ and $\vec{C}=2 \hat{i}-\hat{j}+4 \hat{k}$ will form
Three vectors are expressed as $\vec{a}=4 \hat{i}-\hat{j}, \vec{b}=-3 \hat{i}+2 \hat{j}$ and $\vec{c}=-\hat{k}$. The unit vector along the direction of sum of these vectors is
If $\vec{A}=\hat{i}+\hat{j}+3 \hat{k}, \vec{B}=-\hat{i}+\hat{j}+4 \hat{k}$ and $\vec{C}=2 \hat{i}-2 \hat{j}-8 \hat{k}$, then the angle between the vectors $\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}}$ and $\overrightarrow{\mathrm{Q}}=(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}})$ is (in degree)