1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^2}\left[\left(\sec ^{-1} \sqrt{1+x^2}\right)^2+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] \mathrm{d} x,$$ where $x>0$ is

A
$\left(\tan ^{-1} x\right) \mathrm{e}^{\tan ^{-1} x}+\mathrm{c}$, where c is a constant of integration.
B
$\left(\tan ^{-1} x\right)^2 \mathrm{e}^{\tan ^{-1} x}+\mathrm{c}$, where c is a constant of integration.
C
$2\left(\tan ^{-1} x\right) \mathrm{e}^{\tan ^{-1} x}+\mathrm{c}$, where c is a constant of integration.
D
$2\left(\tan ^{-1} x\right)^2 \mathrm{e}^{\tan ^{-1} x}+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{x^3-7 x+6}{x^2+3 x} \mathrm{~d} x=$$

A
$\frac{x^2}{2}+3 x-\log x+\mathrm{c}$, where c is a constant of integration.
B
$\frac{x^2}{2}+3 x+2 \log x+\mathrm{c}$, where c is a constant of integration.
C
$\frac{x^2}{2}-3 x+2 \log x+\mathrm{c}$, where c is a constant of integration.
D
$\frac{x^2}{2}-3 x-\log x+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\frac{\sin ^2 \pi x}{1+\pi^x}$, then $\int(f(x)+f(-x)) d x$ is equal to

A
$\frac{x}{2}-\frac{\sin \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{1}{2} x-\frac{\sin 2 \pi x}{4 \pi}+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{x}{2}-\frac{\cos \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{1+\pi^x}+\frac{\cos ^2 \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+\mathrm{k}$ where k is a constant of integration, then $A+B+C$ equals

A
$\frac{27}{10}$
B
$\frac{16}{5}$
C
$\frac{27}{5}$
D
$\frac{21}{5}$
MHT CET Subjects
EXAM MAP