1
MHT CET 2023 11th May Morning Shift
+2
-0

$$\int \frac{\log (\cot x)}{\sin 2 x} d x=$$

A
$$-\log (\cot x)^2+c$$, where c is constant of integration.
B
$$2(\log (\cot x))^2+c$$, where c is constant of integration.
C
$$\frac{-1}{4}(\log (\sin x))^2+c$$, where c is constant of integration.
D
$$\frac{-1}{4}(\log (\cot x))^2+\mathrm{c}$$, where c is constant of integration.
2
MHT CET 2023 10th May Evening Shift
+2
-0

The value of $$\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$$ is

A
$$\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\left(x^4+1\right)^{\frac{1}{4}}+c$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$-\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
3
MHT CET 2023 10th May Evening Shift
+2
-0

$$\int \frac{5 \tan x}{\tan x-2} \mathrm{~d} x=x+\mathrm{a} \log |\sin x-2 \cos x|+\mathrm{c},$$ (where $$c$$ is a constant of integration), then the value of $$a$$ is

A
1
B
$$\frac{1}{2}$$
C
2
D
3
4
MHT CET 2023 10th May Evening Shift
+2
-0

The value of $$\int \frac{\left(x^2-1\right) d x}{x^3 \sqrt{2 x^4-2 x^2+1}}$$ is

A
$$2 \sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$2 \sqrt{2+\frac{2}{x^2}+\frac{1}{x^4}}+c$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{2} \sqrt{2-\frac{2}{x^2}+\frac{1}{x^4}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$2 \sqrt{2-\frac{2}{x^2}-\frac{1}{x^4}}+c$$, where $$\mathrm{c}$$ is a constant of integration.
EXAM MAP
Medical
NEET