1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\left(x^2+1\right)}{(x+1)^2} \mathrm{~d} x=$$

A
$ x-2 \log |(x+1)|-\frac{1}{x+1}+c$, where $c$ is a constant of integration.
B
$ x-2 \log |(x+1)|-\frac{2}{x+1}+c$, where c is a constant of integration.
C
  $ x-\log |(x+1)|-\frac{2}{x+1}+c$, where $c$ is a constant of integration.
D
$x-\log |(x+1)|-\frac{x}{x+1}+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int\left(1+x-\frac{1}{x}\right) e^{x+\frac{1}{x}} d x$ equal to

A
$(x+1) e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
B
$-x e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
C
$(x-1) e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
D
$x e^{x+\frac{1}{x}}+c$, (where $c$ is a constant of integration)
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\mathrm{I}=\int \frac{x^2}{(\mathrm{a}+\mathrm{bx})^2} \mathrm{dx}$ is

A
$\frac{1}{b^3}\left[a+b x+2 a \log |a+b x|-\frac{a^2}{a+b x}\right]+c$, (where c is the constant of integration)
B
$\frac{1}{b^3}\left[a+b x-2 a \log |a+b x|+\frac{a^2}{a+b x}\right]+c$, (where c is the constant of integration)
C
$\frac{1}{b^3}\left[a+b x-2 a \log |a+b x|-\frac{a^2}{a+b x}\right]+c$, (where c is the constant of integration)
D
$\frac{1}{b^3}\left[a+b x+2 a \log |a+b x|+\frac{a^2}{a+b x}\right]+c$, (where c is the constant of integration)
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $I=\int e^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right) \cos \theta d \theta$, then $I$ is equal to

A
$\mathrm{e}^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\mathrm{e}^{\sin \theta}(\log \sin \theta+\operatorname{cosec} \theta)+\mathrm{c}$, (where c is a constant of integration)
C
$\mathrm{e}^{\sin \theta}(\log \sin \theta-\operatorname{cosec} \theta)+\mathrm{c}$, (where c is a constant of integration)
D
$\mathrm{e}^{\sin \theta}\left(\log \sin \theta-\operatorname{cosec}^2 \theta\right)+\mathrm{c}$, (where c is a constant of integration)
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12