1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cot x \cdot \log [\log (\sin x)] d x=$$

A
$$\log (\sin x)[\log (\log (\sin x))-1]+c$$
B
$$\log (\sin x)[\log (\log (\sin x))+1]+c$$
C
$$\log (\sin x)[\log (\sin x))+1]+c$$
D
$$\log (\sin x)[\log (\sin x)-1]+c$$
2
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \log x \cdot[\log (e x)]^{-2} d x=\ldots$$

A
$\frac{x}{1+\log x}+c$
B
$x(1-\log x)+c$
C
$x(1+\log x)+c$
D
$\frac{x}{1-\log x}+c$
3
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{1}{1-\cot x} d x=A x+B \log |\sin x-\cos x|+c$ then $A+B=\ldots \ldots$

A
1
B
$-$1
C
0
D
$-$2
4
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{d x}{(\sin x+\cos x)(2 \cos x+\sin x)}=$$

A
$\log |\sin x+\cos x|+c$
B
$\log \left|\frac{\tan x+2}{\tan x+1}\right|+c$
C
$\log \left|\frac{\sin x+\cos x}{2 \cos x-\sin x}\right|+c$
D
$\log \left|\frac{\tan x+1}{\tan x+2}\right|+c$
MHT CET Subjects
EXAM MAP