1
MHT CET 2021 20th September Evening Shift
+1
-0

In Young's double slit experiment, with a source of light having wavelength $$6300 \mathop A\limits^o$$, the first maxima will occur when the

A
path difference is $$9200 \mathop A\limits^o$$
B
phase difference is $$\mathrm{n}$$ radian
C
phase difference is $$\frac{\pi}{2}$$ radian.
D
path difference is $$6300 \mathop A\limits^o$$
2
MHT CET 2021 20th September Evening Shift
+1
-0

In Young's double slit experiment, the intensity at a point where the path difference is $$\frac{\lambda}{4}$$ [ $$\lambda$$ is wavelength of light used] is '$$\mathrm{I}$$'. If '$$\mathrm{I}_0$$' is the maximum intensity then $$\frac{\mathrm{I}}{\mathrm{I}_0}$$ is equal to $$\left[\cos \frac{\pi}{4}=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}\right]$$

A
3 : 2
B
2 : 3
C
3 : 4
D
1 : 2
3
MHT CET 2021 20th September Morning Shift
+1
-0

In Young's double slit experiment, the '$$\mathrm{n^{th}}$$' maximum of wavelength '$$\lambda_1$$' is at a distance '$$\mathrm{y_1}$$' from the central maximum. When the wavelength of the source is changed to '$$\lambda_2$$', $$\left(\frac{\mathrm{n}}{2}\right)^{\text {th }}$$ maximum is at a distance of '$$\mathrm{y_2}$$' from its central maximum. The ratio $$\frac{y_1}{y_2}$$ is

A
$$\frac{\lambda_2}{2 \lambda_1}$$
B
$$\frac{2 \lambda_1}{\lambda_2}$$
C
$$\frac{2 \lambda_2}{\lambda_1}$$
D
$$\frac{\lambda_1}{2 \lambda_2}$$
4
MHT CET 2021 20th September Morning Shift
+1
-0

Light of wavelength '$$\lambda$$' is incident on a single slit of width 'a' and the distance between slit and screen is 'D'. In diffraction pattern, if slit width is equal to the width of the central maximum then $$\mathrm{D}=$$

A
$$\frac{a^2}{\lambda}$$
B
$$\frac{\mathrm{a}}{\lambda}$$
C
$$\frac{a^2}{2 \lambda}$$
D
$$\frac{\mathrm{a}}{2 \lambda}$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination