In the part of an a.c. circuit as shown, the resistance $$R=0.2 \Omega$$. At a certain instant $$(\mathrm{V_A-V_B})= 0.5 \mathrm{~V}, \mathrm{I}=0.5 \mathrm{~A}$$ and $$\frac{\Delta \mathrm{I}}{\Delta \mathrm{t}}=8 \mathrm{~A} / \mathrm{s}$$. The inductance of the coil is
In the circuit shown in the figure, a.c. source gives voltage $$\mathrm{V}=20 \cos (2000 \mathrm{t})$$. Impedance and r.m.s. current respectively will be
Which graph shows the correct variation of r.m.s. current 'I' with frequency 'f' of a.c. in case of (LCR) parallel resonance circuit?
The peak value of an alternating emf '$$\mathrm{e}$$' given by $$\mathrm{e}=\mathrm{e}_0 \cos \omega \mathrm{t}$$ is 10 volt and its frequency is $$50 \mathrm{~Hz}$$. At time $$\mathrm{t}=\frac{1}{600} \mathrm{~s}$$, the instantaneous e.m.f is $$\left(\cos \frac{\pi}{6}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}\right)$$