In the graphical representation of e.m.f. '$$\mathrm{e}$$' and current '$$\mathrm{i}$$' versus '$$\omega \mathrm{t}$$' for an a.c. circuit, both emf and current reach zero, minimum and maximum value at the same time. The circuit element connected to the source will be
An alternating voltge is represented by $$\mathrm{V}=80 \sin (100 \pi \mathrm{t}) \cos (100 \pi \mathrm{t})$$ volt. The peak voltage is
A series combination of resistor 'R' and capacitor 'C' is connected to an a.c. source of angular frequency '$$\omega$$'. Keeping the voltage same, if the frequency is changed to $$\frac{\omega}{3}$$ the current becomes half of the original current. Then the ratio of capacitive reactance and resistance at the former frequency is
An inductive coil has a resistance of $$100 ~\Omega$$. When an a.c. signal of frequency $$1000 \mathrm{~Hz}$$ is applied to the coil the voltage leads the current by $$45^{\circ}$$. The inductance of the coil is $$\left(\tan 45^{\circ}=1\right.$$)