1
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

For series LCR circuit, which one of the following is a CORRECT statement?

A
Potential difference across resistance $$\mathrm{R}$$ and that across capacitor have phase difference $$\frac{\pi^{\mathrm{c}}}{2}$$.
B
Applied e.m.f. and potential difference across resistance '$$R$$' are in the same phase
C
Applied e.m.f. and potential difference inductor coil has phase difference of $$\frac{\pi^{\mathrm{c}}}{2}$$
D
Potential difference across capacitor and that across inductor have phase difference of $$\frac{\pi^{\mathrm{c}}}{2}$$.
2
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

In an LCR series a.c. circuit, the voltage across each of the components L, C and R is 60 V. The voltage across the LC combination is

A
120 V
B
60 V
C
zero V
D
$$\frac{60}{\sqrt{3}}$$ V
3
MHT CET 2021 23th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

If we increase the frequency of an a.c. supply, then inductive reactance

A
increases directly with the square of frequency
B
increases as it directly proportional to frequency
C
decreases inversely with the square of frequency
D
decreases as it is inversely proportional to the frequency
4
MHT CET 2021 22th September Evening Shift
MCQ (Single Correct Answer)
+1
-0

A capacitor of capacity '$$C$$' is charged to a potential '$$V$$'. It is connected in parallel to an inductor of inductance '$$\mathrm{L}$$'. The maximum current that will flow in the circuit is

A
$$V \sqrt{\frac{L}{C}}$$
B
$$\mathrm{V} \sqrt{\mathrm{LC}}$$
C
$$V \sqrt{\frac{C}{L}}$$
D
$$\frac{\mathrm{VC}^2}{\mathrm{~L}}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12