In biprism experiment, if $$5^{\text {th }}$$ bright band with wavelength $$\lambda_1^{\prime}$$ coincides with $$6^{\text {th }}$$ dark band with wavelength $$\lambda_2{ }^{\prime}$$ then the ratio $$\left(\frac{\lambda_2}{\lambda_1}\right)$$ is
In Young's double slit experiment, the two slits are 'd' distance apart. Interference pattern is observed on a screen at a distance 'D' from the slits. A dark fringe is observed on a screen directly opposite to one of the slits. The wavelength of light is
A parallel beam of monochromatic light falls normally on a single narrow slit. The angular width of the central maximum in the resulting diffraction pattern
Light waves from two coherent sources arrive at two points on a screen with path difference of zero and $$\frac{\lambda^{\prime}}{2}$$. The ratio of intensities at the points is $$\left(\cos 0^{\circ}=1, \cos \pi=-1\right)$$