1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $[x]^2-5[x]+6=0$, where [.] denotes the greatest integer function, then

A

$\quad x \in(2,4)$

B

$x \in[2,4]$

C

$\quad x \in[2,4)$

D

$x \in(2,4]$

2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{1\}$ defined by $\mathrm{f}(x)=\frac{x-3}{x-2}$ and $\mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\mathrm{g}(x)=3 x-2$, then sum of all values of $x$ for which $\mathrm{f}^{-1}(x)+\mathrm{g}^{-1}(x)=\frac{19}{6}$ is

A
$\frac{5}{2}$
B
$\frac{7}{2}$
C
$\frac{9}{2}$
D
$\frac{11}{2}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $\mathrm{f}(x)=\log \left(\frac{1+x}{1-x}\right)$ and $\mathrm{g}(x)=\frac{3 x+x^3}{1+3 x^2}$, then $(\mathrm{fog})(x)=$
A
$2 \mathrm{f}(x)$
B
$3 \mathrm{f}(x)$
C
$\quad 4 \mathrm{f}(x)$
D
$-\mathrm{f}(x)$
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \begin{aligned} & f(x)=\left\{\begin{array}{ll} 3-x, & -1 \leqslant x<0 \\ 1+\frac{5 x}{3}, & -3 \leqslant x \leqslant 2 \end{array}\right. \text { and } \\ & g(x)=\left\{\begin{aligned} -x, & -2 \leqslant x \leqslant 3 \\ x, & 0 \leqslant x \leqslant 1 \end{aligned}\right. \end{aligned} $$

then range of (fog) $(x)$ is

A
$\left[1, \frac{8}{3}\right]$
B
$\left[-4, \frac{8}{3}\right]$
C
$\left[-4, \frac{13}{3}\right]$
D
$\left[\frac{8}{3}, \frac{10}{3}\right]$
MHT CET Subjects
EXAM MAP