1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The values of $b$ and $c$ for which the identity $\mathrm{f}(x+1)-\mathrm{f}(x)=8 x+3$ is satisfied, where $\mathrm{f}(x)=\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$, are

A
$\mathrm{b}=2, \mathrm{c}=1$
B
$\mathrm{b}=4, \mathrm{c}=-1$
C
$\mathrm{b}=1, \mathrm{c}=2$
D
$\mathrm{b}=3, \mathrm{c}=-1$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

For a real number $x,[x]$ denotes the greatest integer less than or equal to $x$. Then the value of

$$ \begin{array}{r} {\left[\frac{1}{2}\right]+\left[\frac{1}{2}+\frac{1}{100}\right]+\left[\frac{1}{2}+\frac{2}{100}\right]+\left[\frac{1}{2}+\frac{3}{100}\right]+} \left[\frac{1}{2}+\frac{99}{100}\right]= \end{array} $$

A
49
B
100
C
0
D
50
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function defined by $\mathrm{f}(x)=\frac{2 x+3}{3 x+4}, x \neq-\frac{4}{3}$ is

A
only one one
B
only onto
C
onto for $y \neq \frac{2}{3}$ and one-one
D
neither one-one nor onto
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Range of the function $\mathrm{f}(x)=\frac{x^2+x+2}{x^2+x+1}, x \in \mathbb{R}$ is

A
$\left(1, \frac{7}{3}\right)$
B
$\left[1, \frac{7}{3}\right)$
C
$\left(1, \frac{7}{3}\right]$
D
$\left[1, \frac{7}{3}\right]$
MHT CET Subjects
EXAM MAP