1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For a suitable chosen real constant a, let a function $f: \mathbb{R}-\{-\mathrm{a}\} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{a-x}{a+x}$. Further suppose that for any real number $x \neq-\mathrm{a}$ and $\mathrm{f}(x) \neq-\mathrm{a}$, (fof) $(x)=x$. Then $f\left(-\frac{1}{5}\right)$ is equal to

A
1.5
B
2.0
C
1.0
D
3.0
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}(x)=\frac{2 x-3}{3 x-4}, x \neq \frac{4}{3}$$, then the value of $$\mathrm{f}^{-1}(x)$$ is

A
$$\frac{4 x-3}{3 x-2}$$
B
$$\frac{3 x-2}{4 x+3}$$
C
$$\frac{3 x-4}{4 x-2}$$
D
$$\frac{2 x+3}{4 x-3}$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The range of the function $$\mathrm{f}(x)=\frac{x^2}{x^2+1}$$ is

A
$$(0,1)$$
B
$$[0,1)$$
C
$$(0,1]$$
D
$$[0,1]$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function $$\mathrm{f}(x)=[x] \cdot \cos \left(\frac{2 x-1}{2}\right) \pi$$, where $$[\cdot]$$ denotes the greatest integer function, is discontinuous at

A
all irrational numbers $$x$$.
B
no $$x$$.
C
all integer points.
D
every rational $$x$$ which is not an integer.
MHT CET Subjects
EXAM MAP