1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{x}{2-x}, \mathrm{~g}(x)=\frac{x+1}{x+2}$, then (gogof) $(x)=$

A
$\frac{6+x}{10-2 x}$
B
$\frac{6-x}{10+2 x}$
C
$\frac{6+x}{10+2 x}$
D
$\frac{6-x}{10-2 x}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The domain of definition of $\mathrm{f}(x)=\frac{\log _2(x+3)}{x^2+3 x+2}$ is

A
$\mathrm{R}-\{1,2\}$
B
$(-2, \infty)$
C
$\mathrm{R}-\{-1,-2,-3\}$
D
$(-3, \infty)-\{-1,-2\}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $g(x)=x^2+x-1$ and (gof) $(x)=4 x^2-10 x+5$, then $\mathrm{f}(2)$ is equal to

A
1
B
$-$1
C
2
D
$-$2
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For a suitable chosen real constant a, let a function $f: \mathbb{R}-\{-\mathrm{a}\} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{a-x}{a+x}$. Further suppose that for any real number $x \neq-\mathrm{a}$ and $\mathrm{f}(x) \neq-\mathrm{a}$, (fof) $(x)=x$. Then $f\left(-\frac{1}{5}\right)$ is equal to

A
1.5
B
2.0
C
1.0
D
3.0
MHT CET Subjects
EXAM MAP