$$ \begin{aligned} & f(x)=\left\{\begin{array}{ll} 3-x, & -1 \leqslant x<0 \\ 1+\frac{5 x}{3}, & -3 \leqslant x \leqslant 2 \end{array}\right. \text { and } \\ & g(x)=\left\{\begin{aligned} -x, & -2 \leqslant x \leqslant 3 \\ x, & 0 \leqslant x \leqslant 1 \end{aligned}\right. \end{aligned} $$
then range of (fog) $(x)$ is
If $\mathrm{f}(x)=3 x+10, \mathrm{~g}(x)=x^2-1$, then $(\mathrm{fog})^{-1}(x)=$
The values of $b$ and $c$ for which the identity $\mathrm{f}(x+1)-\mathrm{f}(x)=8 x+3$ is satisfied, where $\mathrm{f}(x)=\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$, are
For a real number $x,[x]$ denotes the greatest integer less than or equal to $x$. Then the value of
$$ \begin{array}{r} {\left[\frac{1}{2}\right]+\left[\frac{1}{2}+\frac{1}{100}\right]+\left[\frac{1}{2}+\frac{2}{100}\right]+\left[\frac{1}{2}+\frac{3}{100}\right]+} \left[\frac{1}{2}+\frac{99}{100}\right]= \end{array} $$