1
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \begin{aligned} & f(x)=\left\{\begin{array}{ll} 3-x, & -1 \leqslant x<0 \\ 1+\frac{5 x}{3}, & -3 \leqslant x \leqslant 2 \end{array}\right. \text { and } \\ & g(x)=\left\{\begin{aligned} -x, & -2 \leqslant x \leqslant 3 \\ x, & 0 \leqslant x \leqslant 1 \end{aligned}\right. \end{aligned} $$

then range of (fog) $(x)$ is

A
$\left[1, \frac{8}{3}\right]$
B
$\left[-4, \frac{8}{3}\right]$
C
$\left[-4, \frac{13}{3}\right]$
D
$\left[\frac{8}{3}, \frac{10}{3}\right]$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=3 x+10, \mathrm{~g}(x)=x^2-1$, then $(\mathrm{fog})^{-1}(x)=$

A
$\left(\frac{x-7}{3}\right)$
B
$\left(\frac{x-7}{3}\right)^{\frac{1}{2}}$
C
$\left(\frac{x-7}{3}\right)^{\frac{1}{3}}$
D
$\left(\frac{3}{x-7}\right)^{\frac{3}{2}}$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The values of $b$ and $c$ for which the identity $\mathrm{f}(x+1)-\mathrm{f}(x)=8 x+3$ is satisfied, where $\mathrm{f}(x)=\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$, are

A
$\mathrm{b}=2, \mathrm{c}=1$
B
$\mathrm{b}=4, \mathrm{c}=-1$
C
$\mathrm{b}=1, \mathrm{c}=2$
D
$\mathrm{b}=3, \mathrm{c}=-1$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

For a real number $x,[x]$ denotes the greatest integer less than or equal to $x$. Then the value of

$$ \begin{array}{r} {\left[\frac{1}{2}\right]+\left[\frac{1}{2}+\frac{1}{100}\right]+\left[\frac{1}{2}+\frac{2}{100}\right]+\left[\frac{1}{2}+\frac{3}{100}\right]+} \left[\frac{1}{2}+\frac{99}{100}\right]= \end{array} $$

A
49
B
100
C
0
D
50
MHT CET Subjects
EXAM MAP