1
MHT CET 2021 20th September Evening Shift
+2
-0

Let $$A=[a, b, c, d], B=[1,2,3]$$. Relation $$R_1, R_2, R_3, R_4$$ are as follows :

\begin{aligned} & R_1=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1),(\mathrm{d}, 2)] \\ & \mathrm{R}_2=[(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 1),(\mathrm{d}, 1)] \\ & \mathrm{R}_3=[(\mathrm{a}, 2),(\mathrm{b}, 3),(\mathrm{c}, 2),(\mathrm{d}, 2)] \\ & \mathrm{R}_4=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{a}, 2),(\mathrm{d}, 3)] \text {, then } \end{aligned}

A
only $$R_3$$ and $$R_4$$ are not functions
B
only $$\mathrm{R}_1$$ and $$\mathrm{R}_2$$ are not functions.
C
only $$R_3$$ is not a function.
D
only $$R_4$$ is not a function.
2
MHT CET 2021 20th September Morning Shift
+2
-0

The domain of the function $$f(x)=\frac{1}{\sqrt{x+|x|}}$$ is

A
$$(-\infty, 0)$$
B
$$(2,5)$$
C
$$(0, \infty)$$
D
$$(-\infty, \infty)$$
3
MHT CET 2020 16th October Morning Shift
+2
-0

The approximate value of the function $$f(x)=x^3-3 x+5$$ at $$x=1.99$$ is

A
7.91
B
7.94
C
6.94
D
6.91
4
MHT CET 2020 16th October Morning Shift
+2
-0

If $$f(x)=\frac{2 x+3}{3 x-2}, x \neq \frac{2}{3}$$, then the function $$f$$ of is

A
a constant function
B
an exponential function
C
an even function
D
an identity function
EXAM MAP
Medical
NEET