1
MHT CET 2021 20th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$A=[a, b, c, d], B=[1,2,3]$$. Relation $$R_1, R_2, R_3, R_4$$ are as follows :

$$\begin{aligned} & R_1=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1),(\mathrm{d}, 2)] \\ & \mathrm{R}_2=[(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 1),(\mathrm{d}, 1)] \\ & \mathrm{R}_3=[(\mathrm{a}, 2),(\mathrm{b}, 3),(\mathrm{c}, 2),(\mathrm{d}, 2)] \\ & \mathrm{R}_4=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{a}, 2),(\mathrm{d}, 3)] \text {, then } \end{aligned}$$

A
only $$R_3$$ and $$R_4$$ are not functions
B
only $$\mathrm{R}_1$$ and $$\mathrm{R}_2$$ are not functions.
C
only $$R_3$$ is not a function.
D
only $$R_4$$ is not a function.
2
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The domain of the function $$f(x)=\frac{1}{\sqrt{x+|x|}}$$ is

A
$$(-\infty, 0)$$
B
$$(2,5)$$
C
$$(0, \infty)$$
D
$$(-\infty, \infty)$$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The range of the function $f(x)=\frac{x-3}{5-x}, x \neq 5$ is

A
$R-\{-5\}$
B
$R-\{-1\}$
C
$R-\{1\}$
D
$R-\{5\}$
4
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

For $$f(x)=[x]$$, where $$[x]$$ is the greatest integer function, which of the following is true, for every $$x \in \mathbf{R}$$

A
$$[x]+1=x$$
B
$$[x]+1 < x$$
C
$$[x]+1 \leq x$$
D
$$[x]+1>x$$
MHT CET Subjects
EXAM MAP