1
MHT CET 2023 9th May Morning Shift
+2
-0

$$\mathrm{f}: \mathbb{R}-\left(-\frac{3}{5}\right) \rightarrow \mathbb{R}$$ is defined by $$f(x)=\frac{3 x-2}{5 x+3}$$, then $$f \circ f(1)$$ is

A
1
B
$$\frac{-13}{29}$$
C
$$\frac{13}{29}$$
D
$$-1$$
2
MHT CET 2023 9th May Morning Shift
+2
-0

The number of discontinuities of the greatest integer function $$\mathrm{f}(x)=[x], x \in\left(-\frac{7}{2}, 100\right)$$

A
104
B
100
C
102
D
103
3
MHT CET 2021 21th September Morning Shift
+2
-0

If f(x) = 3[x] + 5{x + 1}, where [x] is greatest integer function of x and {x} is fractional part function of x, then f($$-$$1.32) =

A
$$-$$4.6
B
$$-$$2.6
C
$$-$$7.4
D
$$-$$3.4
4
MHT CET 2021 20th September Evening Shift
+2
-0

Let $$A=[a, b, c, d], B=[1,2,3]$$. Relation $$R_1, R_2, R_3, R_4$$ are as follows :

\begin{aligned} & R_1=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 1),(\mathrm{d}, 2)] \\ & \mathrm{R}_2=[(\mathrm{a}, 1),(\mathrm{b}, 1),(\mathrm{c}, 1),(\mathrm{d}, 1)] \\ & \mathrm{R}_3=[(\mathrm{a}, 2),(\mathrm{b}, 3),(\mathrm{c}, 2),(\mathrm{d}, 2)] \\ & \mathrm{R}_4=[(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{a}, 2),(\mathrm{d}, 3)] \text {, then } \end{aligned}

A
only $$R_3$$ and $$R_4$$ are not functions
B
only $$\mathrm{R}_1$$ and $$\mathrm{R}_2$$ are not functions.
C
only $$R_3$$ is not a function.
D
only $$R_4$$ is not a function.
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination